Homeostatic structural plasticity increases the efficiency of small-world networks

نویسندگان

  • Markus Butz
  • Ines D. Steenbuck
  • Arjen van Ooyen
چکیده

In networks with small-world topology, which are characterized by a high clustering coefficient and a short characteristic path length, information can be transmitted efficiently and at relatively low costs. The brain is composed of small-world networks, and evolution may have optimized brain connectivity for efficient information processing. Despite many studies on the impact of topology on information processing in neuronal networks, little is known about the development of network topology and the emergence of efficient small-world networks. We investigated how a simple growth process that favors short-range connections over long-range connections in combination with a synapse formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal network topology. Interestingly, we found that small-world networks benefited from homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest paths through the network. Efficiency particularly increased as small-world networks approached the desired level of electrical activity. Ultimately, homeostatic small-world networks became almost as efficient as random networks. The increase in efficiency was caused by the emergent property of the homeostatic growth process that neurons started forming more long-range connections, albeit at a low rate, when their electrical activity was close to the homeostatic set-point. Although global network topology continued to change when neuronal activities were around the homeostatic equilibrium, the small-world property of the network was maintained over the entire course of development. Our results may help understand how complex systems such as the brain could set up an efficient network topology in a self-organizing manner. Insights from our work may also lead to novel techniques for constructing large-scale neuronal networks by self-organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke

After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognit...

متن کامل

Small-world Structure in Children’s Featured Semantic Networks

Background: Knowing the development pattern of children’s language is applicable in developmental psychology. Network models of language are helpful for the identification of these patterns.  Objectives: We examined the small-world properties of featured semantic networks of developing children. Materials & Methods: In this longitudinal study, the featured semantic networks of children aged 1...

متن کامل

Hyaluronan-based extracellular matrix under conditions of homeostatic plasticity

Neuronal networks are balanced by mechanisms of homeostatic plasticity, which adjusts synaptic strength via molecular and morphological changes in the pre- and post-synapse. Here, we wondered whether the hyaluronic acid-based extracellular matrix (ECM) of the brain is involved in mechanisms of homeostatic plasticity. We hypothesized that the ECM, being rich in chondroitin sulfate proteoglycans ...

متن کامل

Small-world structure induced by spike-timing-dependent plasticity in networks with critical dynamics

The small-world property in the context of complex networks implies structural benefits to the processes taking place within a network, such as optimal information transmission and robustness. In this paper, we study a model network of integrate-and-fire neurons that are subject to activitydependent synaptic plasticity. We find the learning rule that gives rise to a small-world structure when t...

متن کامل

Mechanisms of GABAergic Homeostatic Plasticity

Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014